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ABSTRACT

Our understanding of the dynamics of urban

ecosystems can be enhanced by examining the

multidimensional social characteristics of house-

holds. To this end, we investigated the relative

significance of three social theories of household

structure—population, lifestyle behavior, and so-

cial stratification—to the distribution of vegetation

cover in Baltimore, Maryland, USA. Our ability to

assess the relative significance of these theories

depended on fine-scale social and biophysical

data. We distinguished among vegetation in three

areas hypothesized to be differentially linked to

these social theories: riparian areas, private lands,

and public rights-of-way (PROWs). Using a mul-

timodel inferential approach, we found that vari-

ation of vegetation cover in riparian areas was not

explained by any of the three theories and that

lifestyle behavior was the best predictor of vege-

tation cover on private lands. Surprisingly, life-

style behavior was also the best predictor of

vegetation cover in PROWs. The inclusion of a

quadratic term for housing age significantly im-

proved the models. Based on these research re-

sults, we question the exclusive use of income and

education as the standard variables to explain

variations in vegetation cover in urban ecological

systems. We further suggest that the management

of urban vegetation can be improved by devel-

oping environmental marketing strategies that

address the underlying household motivations for

and participation in local land management.

Key words: urban ecology; population; house-

hold; social stratification; lifestyle behavior; vege-

tation; Baltimore; long term ecological research

(LTER).

INTRODUCTION

Recent ecological studies have highlighted the

importance of households and their behavior to the

biophysical environment. Liu and others (2003)

and Keilman (2003) found that the number of

households increases much faster than the total

population, and this rapid increase has important

implications for biodiversity and the consumption

of natural resources. Oldfield and others (2003)

noted a relationship between household participa-

tion in outdoor recreation and household land

management practices. Implied by these ecological

results is the question of whether households are

generic and unidimensional in the ecological roles

they play, or whether they differ along various

dimensions that affect their ecological behaviors.

Although the shift in emphasis from total popula-

tion size to households as a unit of analysis is
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significant and positive, we propose that a multi-

dimensional characterization of households would

enable a more complete understanding of the

motivations, pathways, impacts, and responses of

households to ecological change.

Extensive social science research on household

behavior clearly indicates that households are

multidimensional. For instance, households have

been characterized in terms of social class and

lifestyle (Blumin 1989; Higley 1995), reference

groups (Merton and Kitt 1950; Shibutani 1955;

Singer 1981), and consumer activity (Veblen 1981

[1899]; Horowitz 1985; Schor and Holt 2000; Matt

2003). These characteristics may explain variations

among households in the types of employment

households seek, what they choose to buy, where

they choose to live, how they organize through

participation in formal and informal associations,

and how they spend their leisure time.

Burch and DeLuca (1984) have shown how

household characteristics such as housing and set-

tlement preferences, household size and life stage,

cultural traditions, access to power and knowledge,

and group identity and status can influence social

and biophysical structures and functions. These

interactions can be described and examined in a

human ecosystem context (for example, Machlis

and others 1997; Redman and others 2004). As

human ecosystem research is applied to urban

areas, there is a growing need to answer the

question of whether the usual suspects—popula-

tion density, income and education, and ethnicity

(Whitney and Adams 1980; Palmer 1984; Grove

and Burch 1997; Dow 2000; Vogt and others 2002;

Hope and others 2003)—are adequate as explana-

tory social variables (Grove and others 2005).

This question is particularly relevant in light of a

growing recognition among researchers and man-

agers that there is a wide diversity in the targets,

goals, and agents of management (Svendsen 2005).

For example, the set of targets for urban forestry

management includes such areas as stream valleys,

large protected parks, abandoned industrial areas,

neighborhoods, and public rights-of-way (PROWs).

The set of management agents is also broad and is

characterized by varying motivations and capaci-

ties; this set includes local and state agencies,

nonprofit organizations, businesses, and home-

owners (Grove and others 2005). Government

agencies and environmental nonprofit organiza-

tions increasingly seek to understand the links be-

tween the distribution of woody and grass

vegetation associated with various urban forestry

types and different scales of management. In this

context, more attention is being paid to the ques-

tions of why and how landowners do what they do

on their property and in their neighborhood

(Burch and Grove 1993; Vogt and others 2002;

Grove and others 2005).

Urban vegetation performs a variety of important

ecosystem functions. Amelioration of urban mi-

croclimates, particularly temperature extremes,

and the modification of atmospheric humidity re-

sult from vegetation cover. Similarly, albedo and

radiation loads can be reduced by vegetation

(Sukopp and Werner 1982; Oke 1990). Woody

plants of appropriate height and location can re-

duce heating and air conditioning requirements

through their radiative properties and ability to

slow winds (Nowak 1994a). Vegetation can absorb

particulate pollution from the atmosphere and re-

duce nonpoint water pollution (Randolph 2004). It

can stabilize stream sides, mitigate storm water

flow and improve its quality, and convert nitrate

pollution to harmless gaseous nitrogen. Vegetated

surfaces can contribute to the perviousness of ur-

ban areas and enhance the recharge of water tables.

Plants in urban environments may contribute to

carbon sequestration and hence play an underap-

preciated role in global carbon budgets (Nowak

1994b; Jenkins and Riemann 2003). Vegetation

also provides habitat for animals in metropolitan

settings (Breuste and others 1998).

To begin to understand the link between urban

vegetation cover and different levels of manage-

ment, we examined the distribution of grass and

tree cover in residential areas on the basis of their

location in riparian areas, private lands, and

PROWs. We applied three theories of household

behavior—population, lifestyle behavior, and social

stratification—to assess the relative significance of

three levels of management—individual, house-

hold, and municipal—to the distribution of vege-

tation cover in these areas.

There are distinct mechanisms hypothesized to

link population, lifestyle behavior theory, and so-

cial stratification to vegetation cover in riparian

areas, private lands, and PROWs. Social science

research has focused on theoretical explanations

that consider either population density (see

Agarwal and others 2002 for a comprehensive re-

view in terms of land-use/land-cover models) or

social stratification (Burch 1976; Choldin 1984;

Logan and Molotch 1987; Grove 1996) as the pri-

mary driver of the distribution of vegetation in

urban ecological systems. Population density is

presumed to drive vegetative change in that, as an

area is settled with more people, flora and fauna

are displaced directly by roads and buildings and

indirectly by pollution as the by-product of human
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activities. Social stratification theory has been used

to explain vegetative patterns in that the relative

power or influence that different urban neighbor-

hoods have over public and private investments at

the municipal level produces an inequitable distri-

bution of green investments in the city. Wealthy

residential neighborhoods are more likely to be

characterized by (a) more homeowners and fewer

renters and absentee landowners; (b) residents who

are able to migrate to more desirable and healthy

areas, who were effective at community organiz-

ing, and who are willing to become involved in

local politics; and (c) elites who have differential

access to government control over public invest-

ment, pollution control, and land-use decision

making. In contrast, low-income and heavily pop-

ulated minority areas are more likely to (a) be lo-

cated in or next to polluted areas, (b) be unable to

migrate to more desirable and healthy areas, and

(c) have fewer human resources in terms of lead-

ership, knowledge, political and legal skills, and

communication networks to manipulate existing

power structures (Logan and Molotch 1987).

A number of studies have used measures of in-

come and education to examine the relationship

between social stratification and vegetation struc-

ture (Whitney and Adams 1980; Palmer 1984;

Grove 1996; Grove and Burch 1997; Dow 2000;

Vogt and others 2002; Hope and others 2003;

Martin and others 2004). Hope and others (2003)

and Martin and others (2004) have proposed a

‘‘luxury effect’’ to explain the relationship between

socioeconomic status and urban vegetation. This

approach is limited by the underlying premise that

there is a widespread and singular conception of

luxury, regardless of a household’s demography,

ethnicity, culture, income, or education. Wide-

spread examples of consumer market fragmenta-

tion and diverse lifestyle preferences make it clear

that this is not the case (Solomon 1999; Weiss

2000; Holbrook 2001).

The concept of a luxury effect is relevant to the

third social theory we discuss: lifestyle behaviors

and an ecology of prestige (Grove and others 2004).

Social differentiation among urban neighborhoods

frequently becomes manifest in terms of the dif-

ferent lifestyle choices that households make and

how those choices change over time. Some of the

characteristics that affect the choices households

make about where to locate include socioeconomic

status, family size and life stage, and ethnicity

(Timms 1971; Knox 1994; Short 1996; Gottdiener

and Hutchinson 2001; Kaplan and others 2004).

Building on this approach to lifestyle choices and

neighborhood differentiation, we have proposed

that many environmental management decisions

and expenditures on environmentally relevant

goods and services are motivated by group identity

and the perception of social status associated with

different lifestyles (Grove and Burch 2002; Grove

and others 2004, 2006a,b forthcoming; Law and

others 2004). In this case, a household’s land

management decisions are influenced by its desire

to uphold the prestige of its community and out-

wardly express its membership in a given lifestyle

group. From this perspective, housing and yard

styles, green grass, and tree and shrub plantings are

status symbols, reflecting the different types of

neighborhoods to which people belong (Jenkins

1994; Scotts 1998; Robbins and others 2001; Rob-

bins and Sharp 2003). These status symbols are not

luxuries and vary among different lifestyle groups.

A critical element that may be missing from each

of these social theories is a temporal component.

Researchers have found that housing age is signif-

icantly associated with plant species composition

(Whitney and Adams 1980), diversity (Hope and

others 2003), abundance (Martin and others 2004),

and lawn fertilizer applications (Law and others

2004). Researchers have also found a temporal lag

between changes in neighborhood socioeconomic

status and vegetation cover (Grove 1996; Vogt and

others 2002). However, some urban foresters have

disputed the significance of housing age, particu-

larly in the case of older housing; indeed, they have

described numerous examples of similar housing

age and extreme differences in vegetation cover.

They have also noted the absence of empirical

studies of urban tree growth and mortality rates

and successional dynamics for different types of

urban forest management (Smith 2004; M. F.

Glavin, personal communication).

A second critical element that may be missing

from each of these social theories is a biocomplexity

perspective—spatial, temporal, and organizational

(sensu Pickett and others 2005)—particularly an

awareness of organizational complexity. Organiza-

tional complexity, expressed spatially as the pro-

gression from within-unit processes to boundary

regulation, cross-unit regulation, and functional

patch dynamics, may be particularly important to

this research because it assists in identifying and

associating different levels of management with

corresponding urban forest management types and

social theory (Figure 1). Specifically, different lev-

els of social organization may correspond to dif-

ferent vegetation types and social theories (Grove

and Burch 1997; Grimm and others 2000; Vogt and

others 2002). Figure 1 illustrates this potential

organizational complexity, with riparian areas at
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the individual level associated with population

theory, private lands at the household level asso-

ciated with lifestyle behavior theory, and PROWs at

the neighborhood level associated with social

stratification theory. In other words, at different

levels of social organization, different social pro-

cesses may determine the distribution of vegetation

cover. Further, by conceiving of the system as

organizationally complex, we can examine how

different social theories may be complementary

rather than conflicting. This is important because it

can provide a foundation for the generation of a

new human ecosystem theory describing the re-

ciprocal relationships among levels of organization

(Grove and others 2005; Pickett and others 2005).

The empirical ability to examine and compare the

relative significance of these three social theo-

ries—population, lifestyle behavior, and social

stratification—associated with vegetation cover in

riparian areas, private lands, and PROWs is new.

Until recently, only relatively coarse-resolution

geospatial data have been available to carry out

such analyses. Regional vegetation-cover data have

typically been derived from 30 m resolution Landsat

Thematic Mapper (TM) satellite imagery. Socio-

economic analyses have normally been carried out

at the level of a US census tract, in which a single

tract contains approximately 2,500–8,000 persons,

or a US census block group, which contains be-

tween 200 and 400 households. Other geospatial

data, particularly cadastral information, have more

often than not been maintained by local govern-

ments in hard-copy format. Recent advances in

remote sensing and the widespread adoption of

geographic information systems (GIS) by federal,

state, and local governments have greatly increased

the availability of high-resolution geospatial data.

Vegetation can be derived from high-resolution

imagery and combined with digital parcel data,

which includes property boundaries for each parcel,

and digital surface-water data to distinguish among

vegetation in riparian areas, private lands, and

PROWs. Figure 2 compares and contrasts the types

of analyses that can be done with coarse-resolution

data from Landsat-derived vegetation and US cen-

sus block groups and high-resolution data from

IKONOS-derived vegetation and parcel boundaries.

Research Question and Hypotheses

Based upon our summary of recent developments

in theory and data, we ask, What is the relative sig-

nificance of population, lifestyle behavior, and social

stratification theories to the distribution of vegetation

cover—grass and trees—in riparian, private lands, and

PROWs in urban ecological systems? We propose four

hypotheses:

H1 Population. Population density will be most sig-

nificant to the distribution of vegetation cover in

riparian areas. This reflects the idea that only

Figure 1. Hypothesized model

of social organizational

complexity in the Baltimore

ecosystem Study.

Urban Households and Distribution of Vegetation 581



recently have public agencies, community

groups, and private homeowners identified

vegetation management in urban riparian areas

as an important issue (Maryland Forest Service

2004). Thus, the direct and indirect settlement

effects associated with population density will be

the most significant driver of vegetation cover in

riparian areas.

H2 Lifestyle Behavior. Lifestyle behavior will be most

significant to the distribution of vegetation cover

on private lands. A household’s land manage-

ment decisions are influenced by its desire to

uphold the prestige of the community and ex-

press its membership in a given lifestyle group.

This group can be interpreted as a manifestation

of the household’s placement in a lifestyle group,

representing its group identity and social status.

H3 Social Stratification. Social stratification will be

most significant to the distribution of vegetation

cover in PROWs. Public agencies are legally

responsible for the management of vegetation in

PROWs. The distribution of vegetation will be

inequitable, reflecting the relative influence that

neighborhoods have over municipal investment

decisions.

H4 Housing Age. Housing age will be significant to the

distribution of vegetation cover in riparian areas,

private lands, and PROWs. Land cover is dra-

matically altered when new homes are built in

urban areas. Vegetation cover develops over time

and reflects the time that has elapsed since it was

established (Whitney and Adams 1980; Hope and

others 2003). Because of disagreements among

researchers (Whitney and Adams 1980; Hope and

others 2003) and urban forestry professionals (M.

F. Galvin, personal communication; Smith 2004),

we propose that the relationship is nonlinear,

with housing age being more significant when

Figure 2. Comparison of

relatively coarse-scale

(1:100,000) and fine-

scale (1:10,000)

vegetation analysis that

can be performed using

Landsat-(1) and

IKONOS-(2) derived

vegetation data. The

relatively coarse

resolution of Landsat, at

30 m (1a, 1b), only

allows for vegetation

summation at the block

group level (1c). At 1 m,

IKONOS satellite

imagery (2a) provides a

much more precise data

source from which to

derive vegetation (2b).

When combined with

parcel data, private land

(2c) and public right of

way (2d) vegetation can

be distinguished.

IKONOS imagery

courtesy of Space

Imaging, LLC.
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homes are new and less significant when homes

are old.

METHODS

Site Description

Urban ecosystems are strikingly heterogeneous and

scale dependent (Grimm and others 2000; Pickett

and others 2001). Baltimore, Maryland (lower

left: 39�11¢31¢¢N, 76P�42¢38¢¢W; upper right:

39�22¢30¢¢N, 76�31¢42¢¢W), houses 614,000 people

in 276 neighborhoods (Figure 3). In 2000, the City

of Baltimore had 258,518 households and 300,477

household building units, with an average of 2.5

persons per household. The city includes a variety

of housing types, of which 14.8% are single-family

detached units, 28.4% are multifamily units, and

55.6% are town homes. The median age of these

housing units as summarized by the US census

block group, is 58 years, with a median low of 4

years and a median high of 64 years. The city has

experienced extensive demographic and economic

changes over the past 50 years, with its population

declining from nearly 1.2 million in the 1950s to its

current level (Burch and Grove 1993). At the same

time, the Baltimore metropolitan region has had

one of the highest rates of deforestation in the

northeastern United States because of urban sprawl

(Horton 1987). Located in the deciduous forest

biome, on the banks of the Chesapeake Bay, the

nation’s largest estuary, Baltimore City is drained

by three major streams and a direct harbor wa-

tershed.

Databases

Categorization of Neighborhoods: Population, Life-

style Behavior, and Social Stratification. Neighbor-

hood measures of population, lifestyle behavior,

and social stratification are based on the Claritas

PRIZM (potential rating index for zipcode markets)

categorization system, which was developed by

demographers and sociologists for market research

(Weiss 1988, 2000; Holbrook 2001; Grove and

others, 2006a, forthcoming). There are two primary

goals of the PRIZM classification system. First is to

categorize the 250 million people of the American

population and their urban, suburban, and rural

neighborhoods into lifestyle clusters using census

data about household education, income, occupa-

tion, race/ancestry, family composition, and hous-

ing. Second is to associate these clusters with

characteristic household tastes and attitudes using

Figure 3. Site map of Baltimore City.
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additional data such as market research surveys,

public opinion polls, and point-of-purchase receipts

(Weiss 1988, 2000).

Claritas uses factor analysis and US census data

to generate several group measures. This process is

also known as ‘‘social area analysis’’, an urban

studies method employing factor analysis (Bell and

Newby 1976; Johnston 1976; Murdie 1976; Hamm

1982). Claritas has identified six primary factors

that explain neighborhood variance: social rank

(for example, income, education), household (for

example, life stage, size), mobility (for example,

length of residence), ethnicity (for example, race,

foreign versus U.S. born), urbanization (for exam-

ple, population and housing density), and housing

(for example, owner versus renter status, home

values) (Lang and others 1997; Claritas 1999). The

PRIZM categorization system has three levels of

aggregation: 5, 15, or 62 categories. The five-group

categorization is arrayed along an axis of urbani-

zation. Disaggregating from 5 to 15 categories adds

a second axis: socioeconomic status. The 62-group

categorization disaggregates the socioeconomic

status axis into a lifestyle categorization with

components including household composition,

mobility, ethnicity, and housing characteristics

(Claritas 1999). The three PRIZM aggrega-

tions—urbanization, socioeconomic status, and

lifestyle—correspond, respectively, to population

density, social stratification, and lifestyle behav-

ior—the three theories we suggest influence the

distribution of vegetation cover. To date, PRIZM

has been used in several studies of urban vegeta-

tion, including Martin and others (2004), Grove

and others (2006).

A GIS data layer of PRIZM categories was created

for Baltimore City by joining US Census Block

Group boundaries data from geographic data

technology’s (GDT) dynamap census data with a

PRIZM classification for each block group from the

Claritas 2003 database (http://www.claritas.com).

Each of the 710 block groups was assigned a unique

PRIZM category. The GDT census boundaries were

used instead of the US Census Bureau and Claritas

boundaries because of their higher positional

accuracy when compared with 1:12,000-scale

IKONOS imagery. The Baltimore City boundary

derived from the GDT census data served as the

common boundary for all geospatial operations.

Median House Age. Median house age for each

block group was obtained from the Geolytics census

2000 attribute database (Geolytics 2000), and each

block group was assigned a median house age va-

lue. Land-use history was not included in this

analysis because the current land use in Baltimore

City was in place or had been converted from

agricultural use by the early 1900s (Besley 1914,

1916).

Parcel Boundaries. Property parcel boundaries

were obtained from the City of Baltimore. These

parcel boundaries, converted to digital format from

the city’s cadastral maps, were current as of July

2001. Although the City of Baltimore does not

document the accuracy of the parcel data set, the

parcel polygons were overlaid on top of 1:12,000-

scale 1m IKONOS imagery. Fifty parcel/PROW

boundaries that could be seen clearly on the

IKONOS imagery were compared to the parcel

polygons. A mean difference of approximately ± 2

pixels (2 m) between the two data sets was noted.

The Baltimore city parcel data did not have the

same geographic extent as the block group data,

with parcels either extending across the city’s bor-

der or falling short of it. Where city parcel bound-

aries fell short of the city boundary, parcel data

from Baltimore County were appended to the city

data.

Vegetation Data. The vegetation data used in

this study came from the strategic urban forests

assessment (SUFA) for Baltimore City (Irani and

Galvin 2003). Four land-cover classes were derived

from 1:12,000 scale IKONOS satellite imagery

(Space Imaging, LLC) acquired in October 2001:

other (developed), grass, forest, and water. After

fusing the 1 m panchromatic imagery with the 4 m

imagery to create a pan-sharpened 1 m multispec-

tral image, Irani and Galvin (2003) applied a series

of algorithms to extract land cover. At the time of

this publication, no information was available on

the accuracy of the classification. However, a

qualitative assessment of the accuracy indicated

that there was generally excellent discrimination

between the other, vegetation (forest and grass),

and water classes.

Hydrologic Data. Hydrologic data were obtained

from two sources: (a) 1:24,000-scale hydrologic

data from the United States Geological Survey

(USGS) and (b) water features depicted in the

SUFA LULC data set (see above). A comparison of

the two data sets with 2001 1 m pan-sharpened

multispectral IKONOS imagery indicated that the

SUFA LULC data set provided a more precise

delineation of water feature boundaries (stream,

lake, and harbor banks). However, many lower-

order streams that exist in the USGS data set were

not present in the SUFA data set. In an effort to

create the optimal water data set, water-feature

boundaries from the SUFA data set were combined

with the stream centerlines from the USGS data set.

Using the IKONOS imagery as the reference data
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set, editing was performed to ensure that all

streams were connected and to correct positional

errors that existed in the USGS stream centerlines

data set. Finally, water features were assigned one

of the following codes: stream centerline, stream

shoreline, pond/lake shoreline, or harbor

shoreline.

Geographical Analyses

Segmentation of Vegetation and Characterization of

US Census Block Groups. Riparian vegetation, pri-

vate-land vegetation, and PROW vegetation were

each summarized at the block group level following

a three-step process: (a) thematic polygon (riparian

area, private land, PROW) boundaries were ex-

tracted and created from source data, (b) the the-

matic polygon boundaries were combined with

forest and grass vegetation polygons from Mary-

land Dept. of Natural resources (DNR’s) SUFA

vegetation layer, and (3) thematic boundary area

and vegetation area were summarized and nor-

malized at the block group level.

Four separate riparian buffer analyses were car-

ried out: (a) 100 ft (30.5 m) buffer around all

streams (centerlines and shorelines), (b) 100 ft

buffer around all water features, (c) 300 ft (91.5 m)

buffer around all streams, and (d) 300 ft buffer

around all water features. The choice of buffer size

was based on riparian guidelines for water quality

(100 ft) and wildlife habitat (300 ft) of streams

established by the State of Maryland (Goetz and

others 2003; Maryland Forest service 2004;

A. Hairston-Strang, personal communication 2004;

M. F. Galvin, personal communication). Non-

stream riparian areas were included to examine

their significance to the results. Each of the four

buffered layers was individually intersected with

both the forest and grass polygons from the SUFA

LULC data set and the block group boundaries. The

result of this intersection was a layer in which only

those vegetation polygons that fell within the

buffer remained, each of which was assigned a

block group identifier. This enabled for the sum-

mation of riparian forest area and riparian grass

area by block group for each of the four methods.

A parallel analysis was done to compute the

riparian area for each block group. Each of the four

riparian buffer layers was intersected with the

block group layer, resulting in a layer consisting

only of riparian polygons, each polygon assigned to

one block group. The riparian area was then

summarized for each block group. Finally, riparian

forest area and riparian grass area were normalized

to percentages at the block group level by dividing

by the total area of riparian land within the block

group.

PROW land was extracted from the parcel

boundary data set by identifying all ‘‘nonparcel’’

polygons. As implied, no parcels exist in ‘‘nonpar-

cel’’ areas. In Baltimore these nonparcel areas

correspond to roads and the rights-of-way along

roads. Railroad and transmission lines parcels are

privately owned and not considered PROW land.

Topology rules were created to detect nonparcel

areas, create new polygons from the gaps in the

data set, then assign these polygons to the PROW

category. As was done with the riparian analysis,

the PROW layer was intersected with both the

forest and grass polygons and the block group

boundaries in one step and only the block group

boundaries in another. PROW forest and grass

areas were normalized at the block group level by

dividing by the total area of PROW land within

each block group.

For the private-land vegetation summarization,

the parcel boundaries were first linked to the 2003

Maryland property view assessment and taxation

database through a relational join to obtain land-

use codes. Only those parcels with land-use codes

aside from ‘‘exempt’’ and ‘‘exempt commercial’’

were retained for the private-land analysis.

Approximately 70% of Baltimore City’s parcel land

fell into the ‘‘private land’’ category. However, the

amount of exempt and exempt commercial land

varied at the block group level, with the majority

of block groups’ parcel land being less than

30% exempt/exempt commercial (median = 16%,

mean = 23%). As with the two previous analyses,

the private-lands layer was intersected with the

forest and grass polygons from the SUFA layer and

the block group boundaries in one step and only

the block group boundaries in another. The forest

and grass private-land areas were normalized at the

block group level by dividing by the total private

land area in the block group.

A summary of the area occupied by riparian

areas, private lands, and PROWs is presented in

Table 1. On average, riparian land occupied less

than 0.1% of the block group area, PROW land

19%, and private land 55%. Due to errors in the

parcel data, private land was overestimated and

PROW land underestimated for three block groups

in the city that occupied less than 1% of the total

area under study. These three block groups were

retained in the analyses. A total of 710 block groups

were used in the analyses. Riparian areas were

included in 169 block groups based on 100 ft buf-

fers around streams only, in 228 block groups using

a 300-ft buffer around all water features; 707 block
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groups contained PROWs; and 710 block groups

had private lands present.

Statistical Analyses. A series of 28 logistic

regressions were performed and compared to

determine which combinations of PRIZM catego-

rization (5, 15, or 62 categories) and median house

age best predicted variation in each of four re-

sponse variables (percent PROW tree and grass

cover and percent private tree and grass cover).

Twenty-four additional logistic regressions were

performed and compared to determine which

PRIZM categorization best explained variation in

each of eight response variables related to riparian

vegetation. In a logistic regression, a response var-

iable that is binary or a rate ranging between 0 and

1 is predicted as a function of a series of continuous

or discrete predictor variables. Logistic regression

uses a maximum-likelihood estimator that converts

the dependent variable into a logit variable, or the

natural log odds of the response occurring. In this

case, our predictor variables are all discrete, each

representing a dummy variable for a different

PRIZM category. This yields the following equation:

E Yf g ¼
exp b0 þ b1X1 þ � � � þ bp�1Xp�1

� �

1 þ exp b0 þ b1X1 þ � � � þ bp�1Xp�1

� � ð1Þ

where E{Y} is the expected response value, b0 is an

intercept variable, and bn is the coefficient repre-

senting estimated odds ratio for variable Xn holding

all else constant. Logistic regression was used rather

than linear regression or analysis of variance

(ANOVA) because our response variable is a per-

centage. Not only do percentages tend to violate

the assumptions of normality (normal distribution

of responses for each category level), but they are

also bounded between 0 and 1, whereas predictions

from regression and ANOVA are not bounded. Al-

though logistic regression is typically used for

regressing binary (0, 1) response variables, it has

been found to be superior in its predictive power to

linear-regression approaches when the response is

a percentage (Zhao and others 2001). This is partly

because linear-regression models have increasingly

poor predictive abilities as the actual value ap-

proaches the bounds of 1 and 0. A particular

problem is that solving a linear model can result in

values outside of those bounds. Although logistic

regression is generally used with continuous pre-

dictors, it has been used successfully with categor-

ical predictors and found to perform better than

ANOVA under certain conditions (Whitmore and

Schumacker 1999). PRIZM categories are coded as

factors, and each category for a given PRIZM cate-

gorization is treated as a factor level or dummy

variable, so a significance test statistic for a given

factor can be interpreted as a test that the mean

response for that group is significantly different

than for the entire population. In the models where

it is included, median housing age is coded as a

quadratic term (the untransformed term plus the

term squared).

We used the multimodel inference approach of

Burnham and Anderson (2002) to determine

whether PRIZM’s 15 or 62 classifications, median

housing age, or some combination best explained

the variation in each of the 28 private-land and

PROW response variables. We used similar meth-

ods to determine whether PRIZM’s 15 or 62 clas-

sifications best explained the variation in each of

the 24 riparian response variables (Table 2).

Hence, for private-land and PROW models, we

have groupings of seven comparative models for

each response variable; whereas for the riparian

variables, we have groupings of three comparative

models for each response variable. In no case are

two models with different response variables

compared. For the models with median housing

age by block group, a quadratic term for age is

included, to account for our hypothesis that the

effect of age on vegetation is nonconstant. Multi-

model comparisons indicated that, in almost all

cases, the model with the quadratic term was

superior to those without; hence, for the sake of

simplicity, only results with the quadratic term are

given here.

Table 1. Summary of Area Statistics for Block Groups along with Riparian Areas, Private Land, and Public
Right-of-Way (PROW)

Area (ha)

Unit of Analysis Mean SD Min. Max.

Block group 29.71 51.50 3.01 881.96

Riparian areas 0.96 2.77 0.00 22.70

Private lands 16.37 30.00 0.00 16.37

PROWs 6.22 6.39 0.00 93.32
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Table 2. Summary Response and Predictor Variables of Logistic Regression Models

Name Response Predictors

PROWT1 Percentage of PROW covered by trees PRIZM5

PROWT2 ‘‘‘‘ PRIZM15

PROWT3 ‘‘‘‘ PRIZM62

PROWT4 ‘‘‘‘ AGE

PROWT5 ‘‘‘‘ PRIZM5+AGE

PROWT6 ‘‘‘‘ PRIZM15+AGE

PROWT7 ‘‘‘‘ PRIZM62+AGE

PROWG1 Percentage of PROW covered by grass PRIZM5

PROWG2 ‘‘‘‘ PRIZM15

PROWG3 ‘‘‘‘ PRIZM62

PROWG4 ‘‘‘‘ AGE

PROWG5 ‘‘‘‘ PRIZM5+AGE

PROWG6 ‘‘‘‘ PRIZM15+AGE

PROWG7 ‘‘‘‘ PRIZM62+AGE

PLT1 Percentage of private land covered by trees PRIZM5

PLT2 ‘‘‘‘ PRIZM15

PLT3 ‘‘‘‘ PRIZM62

PLT4 ‘‘‘‘ AGE

PLT5 ‘‘‘‘ PRIZM5+AGE

PLT6 ‘‘‘‘ PRIZM15+AGE

PLT7 ‘‘‘‘ PRIZM62+AGE

PLG1 Percentage of private land covered by grass PRIZM5

PLG2 ‘‘‘‘ PRIZM15

PLG3 ‘‘‘‘ PRIZM62

PLG4 ‘‘‘‘ AGE

PLG5 ‘‘‘‘ PRIZM5+AGE

PLG6 ‘‘‘‘ PRIZM15+AGE

PLG7 ‘‘‘‘ PRIZM62+AGE

RTa1 Percentage of areas within 100 ft of streams covered by trees PRIZM5

RTa2 ‘‘‘‘ PRIZM15

RTa3 ‘‘‘‘ PRIZM62

RGa1 Percentage of areas within 100 ft of streams covered by grass PRIZM5

RGa2 ‘‘‘‘ PRIZM15

RGa3 ‘‘‘‘ PRIZM62

RTb1 Percentage of areas within 100 ft of all water bodies covered by trees PRIZM5

RTb2 ‘‘‘‘ PRIZM15

RTb3 ‘‘‘‘ PRIZM62

RGb1 Percentage of areas within 100 ft of all water bodies covered by grass PRIZM5

RGb2 ‘‘‘‘ PRIZM15

RGb3 ‘‘‘‘ PRIZM62

RTc1 Percentage of areas within 300 ft of streams covered by trees PRIZM5

RTc2 ‘‘‘‘ PRIZM15

RTc3 ‘‘‘‘ PRIZM62

RGc1 Percentage of areas within 300 ft of streams covered by grass PRIZM5

RGc2 ‘‘‘‘ PRIZM15

RGc3 ‘‘‘‘ PRIZM62

RTd1 Percentage of areas within 300 ft of water bodies covered by trees PRIZM5

RTd2 ‘‘‘‘ PRIZM15

RTd3 ‘‘‘‘ PRIZM62

RGd1 Percentage of areas within 300 ft of water bodies covered by grass PRIZM5

RGd2 ‘‘‘‘ PRIZM15

RGd3 ‘‘‘‘ PRIZM62

PROW, public rights-of-way.
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Burnham and Anderson’s (2002) approach re-

lies on the information theory approach pioneered

by Akaike (1973, 1978), which shows that mini-

mization of the Akaike information criterion (AIC)

can help to select the ‘‘order’’ of likelihood of a set

of nested or nonnested models. The more com-

monly used F-tests can only be used for nested

models. That is, for k possible models of an

underlying process, AIC scores help to tell us

which of those models approximate that under-

lying process the best. Traditional model fit met-

rics, such as R-squared, are often not appropriate

for comparison because a model with more vari-

ables is by definition more statistically ‘‘flexible’’

than one with fewer (which is why R-squared will

always go up with the addition of parameters),

meaning that the more complex model will

always appear superior. However, complexity

comes at the expanse of parsimony; therefore, it is

commonly accepted that a better model is one that

increases fit relative to the number of parame-

ters (Myung and others 2000; Wagenmakers and

Farrell 2004). On the other hand, AIC, penalizes

models that are less parsimonious. By accounting

for the tradeoff between model fit and complexity,

it can show us which models best compromise

between the two. The AIC is given by the equa-

tion (Burnham and Anderson 2002; Turkheimer

and others 2003):

AIC ¼ �2 log L Mð Þ þ 2k ð2Þ

where k is the number of parameters plus one and

log L(M) is the maximized log likelihood for the

fitted model.

The AIC cannot be interpreted on its own, but

only as a relative measure, to be compared to the

AIC scores for other models. If the AIC score from

model A is lower than that for model B, it is an

indication that model A is more likely to be correct.

However, although a lower AIC is an indication of a

more likely model, that information does not ex-

plain how much more likely one model is over

another, and in some cases small differences in AIC

scores can lead to a false sense of confidence that

one model is better than another (Wagenmakers

and Farrell 2004). Akaike weights (Burnham and

Anderson 2002) show the probability of the more

complex model being the correct one and are given

by the equation:

wi AICð Þ ¼ e�:5 Di AICð Þð Þ
PK

k¼1 e�:5 Di AICð Þð Þ
ð3Þ

where k is the number of models.

RESULTS

In reporting our results, we use population density,

social stratification, and lifestyle behavior to signify

the PRIZM system aggregated to 5, 15, and 62

categories respectively. Table 3, which includes

results for models with private-land and PROW

response variables, shows that the most complex

model—lifestyle behavior and housing age—best

explains PROW grass, private-land trees, and pri-

vate-land grass, indicating that the loss in parsi-

mony from greater model detail is outweighed by

increases to model fit. For PROW trees, on the

other hand, the third model—lifestyle behavior—is

listed as best, indicating that any gains to fit made

by adding house age are outweighed by losses to

model parsimony (this result held even if the

quadratic term for house age was not included).

The seven-way Akaike weights suggest that there is

little probability that the second-best model is

actually the best in any of the cases.

The order of the models is also illustrative in

teasing out the relative contribution of the different

explanatory variables. For PROW trees, the fact

that model 7, lifestyle behavior and house age, is

second, despite housing age not significantly

improving on the model, suggests the importance

of lifestyle behavior relative to population density

and social stratification. For PROW and private-

land grass, the fact that model 6—social stratifica-

tion and housing age—is second best suggests that

housing age may be a more important contributor

in making model 7 the best, whereas for private-

land trees, the fact that model 3—lifestyle behav-

ior—is second suggests the relative importance of

lifestyle behavior in doing the same.

In addition, pseudo R-squared values on model

4, housing age only—tend to be much higher

for grass (0.12 and 0.19 for PROW and private

land, respectively) than for trees (0.06 and 0.09)

(Table 4).

For the models with riparian-land response

variables (Table 4), the simplest model—popula-

tion density—is always identified as the best, no

matter how riparian buffers are specified. However,

this does not prove that population density is nec-

essarily an adequate predictor of riparian vegeta-

tion. Rather, it suggests that we fail to prove that

social stratification or lifestyle behavior adds any

significant explanatory power, relative to the loss of

parsimony they introduce. Very low pseudo R-

squared values on the models with just population

density suggest that if it is an important predictor,

our models have failed to capture population

588 J. M. Grove and others
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density’s importance (possibly because PRIZM re-

cords it as a categorical rather than continuous

variable). The role of population density as a pre-

dictor should be further explored.

Coefficients and test statistics for the age terms in

the models where they appear are provided in

Table 5. In the interest of space, coefficients on

PRIZM categories are not given. The first two col-

umns of Table 5 contain coefficients and Wald test

statistics for the median housing age variable; and

the second two columns contain the same for the

squared term for that variable. In all cases, the

coefficient on the untransformed variable is posi-

tive, ranging between 0.094 and 0.16, whereas in

all cases, the squared term is negative, ranging

between –0.0011 and –0.0018. The stars next to the

test statistics indicate that the squared term is sig-

nificant at the 95% confidence level (according to a

Wald test) for most but not all of the private-land

models, whereas none are significant for the PROW

models. Moreover, the untransformed term is

insignificant for all but the private-land grass

models. This result is somewhat inconsistent with

the AIC model comparisons, which indicated that

in all cases but PROW trees, median housing age

improves the model, and that in most cases, the

quadratic term also improves the model over a

simple linear term for housing age.

To address this inconsistency, we ran a series of

quasi-likelihood regressions on all models, includ-

ing housing age. The logistic regression model as-

sumes a binomial distribution of errors which,

especially in the case of proportion data, may not

always be the case. It is possible that this is partly to

blame for overinflation of standard errors, and

hence lower than expected test statistics on coeffi-

cients. A less restrictive generalized linear model

uses ‘‘quasi-likelihood’’ estimation, which requires

definition of only the mean and variance func-

tion without assuming a specific distribution

(McCullagh and Nelder 1989). It is frequently

warranted in cases where data are highly under-

dispersed or overdispersed and has been used on

percentage data (Wedderburn 1974). This approach

requires the user to specify a link and variance

function. For this model, we chose logit for the

former, because our data are bounded by 0 and 1,

and constant variance for the latter, because

residual plots indicated little pattern to the spread

of errors.

The resulting coefficients and test statistics show

a very similar range for coefficients, but much

higher t statistics overall (Table 6). The fact that the

coefficients on housing age terms for PROW tree

models are significant is not necessarily inconsis-

tent with the fact that model 3—lifestyle behav-

ior—has the lowest AIC score, because its

explanatory power might be outweighed by its

penalty to parsimony. All coefficients are signifi-

cant at the 95% confidence level, and all but one

are significant at the 99% level.

The signs on the two age variables suggest a

parabolic relationship between housing age and the

probability of presence of vegetation, holding

Table 5. House Age Coefficients, t Statistics, and Significance Levels from Private Land and public Rights-of-
way (PROW) Logistic Regression Models

Age Coefficients House Age t House Age2 t

PROWT4: AGE 0.126 1.135 )0.001520 )1.368

PROWT5: PRIZM5 + AGE 0.112 0.992 )0.001336 )1.178

PROWT6: PRIZM15 + AGE 0.162 1.302 )0.001881 )1.513

PROWT7: PRIZM62 + AGE 0.141 1.062 )0.001700 )1.287

PROWG4: AGE 0.123 1.563 )0.001407 )1.7981

PROWG5: PRIZM5 + AGE 0.119 1.494 )0.001347 )1.700

PROWG6: PRIZM15 + AGE 0.118 1.443 )0.001345 )1.6571

PROWG7: PRIZM62 + AGE 0.094 1.169 )0.001115 )1.383

PLT4: AGE 0.138 1.612 )0.001688 )1.9622

PLT5: PRIZM5 + AGE 0.125 1.437 )0.001525 )1.7431

PLT6: PRIZM15 + AGE 0.158 1.6761 )0.001898 )2.0062

PLT7: PRIZM62 + AGE 0.123 1.295 )0.001572 )1.6501

PLG4: AGE 0.166 2.1802 )0.001883 )2.4992

PLG5: PRIZM5 + AGE 0.161 2.0962 )0.001818 )2.3872

PLG6: PRIZM15 + AGE 0.154 1.9802 )0.001749 )2.2752

PLG7: PRIZM62 + AGE 0.126 1.6551 )0.001474 )1.9401

1Significant at 90% confidence level.
2Significant at 95% confidence level.
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PRIZM class constant. Because the dependent

variables represent the probability that there will be

100% tree or grass cover, we can interpret them as

expected percentage tree or grass cover proxies.

Hence, Figure 4A (tree cover) and B (grass cover)

show how, under quasi-likelihood estimation, ex-

pected cover increases and then decreases in a

parabolic fashion with housing age. The maximum

occurs between 40 and 50 years. This does not

necessarily mean that houses lose vegetation as

they age beyond 40 or 50 years; rather, it means

that houses built at that time are associated with

lower vegetation levels for any number of reasons.

Although not shown here, the curves derived from

the logistic regression are extremely similar.

DISCUSSION

Theoretical Implications

The results from our analyses indicate that we

should accept hypotheses 2 and 4 and reject

hypotheses 1 and 3. In other words, lifestyle

behavior was the best predictor of vegetation cover

on private lands, and median housing age was

significantly associated with vegetation cover for

riparian areas, private lands, and PROWs. Although

population density was the best predictor of vege-

tation cover for riparian areas, the pseudo R-

squared values were so low that it casts doubt on

the model. Finally, social stratification was not the

best predictor of vegetation cover in PROWs.

The poor performance of the population density

model for all four combinations of riparian areas

makes it clear that alternative theories and models

are needed. For instance, historical legacies of

zoning and development in riparian areas may

exist. Also, larger-scale ecosystem processes, such

as changes in riparian groundwater flow and

associated urban hydrologic drought may play a

significant role in the distribution of vegetation

cover in riparian areas (Lowrance and others 1997;

Groffman and others 2003).

Lifestyle behavior and median housing age were

the best predictors of the distribution of vegetation

cover on private lands. This suggests that house-

hold land management decisions, influenced by a

household’s desire to assert its membership in a

given lifestyle group and to uphold the prestige of

the household’s neighborhood, best predicts vari-

ations in vegetation cover on private lands.

In most cases, public agencies are responsible for

the maintenance of existing trees in PROWs, and

homeowners are responsible for the maintenance

of existing grass in these areas. Surprisingly, social

stratification was not the best predictor of vegeta-

tion cover for PROWs. Rather, lifestyle behavior

was a better predictor of the distribution of tree

cover, and lifestyle behavior and median housing

age was a better predictor of grass cover in PROWs.

To explain this phenomenon, we hypothesize that

homeowners invest both in their own prop-

erty—private lands—and in the PROWs in front of

Table 6. House Age Coefficients, t Statistics, and Significance Levels from Private Land and Public Rights of
way (PROW) Quasi Likelihood Regression Models

Age Coefficients House Age t House Age2 t

PROWT4: AGE 0.118 2.8862 )0.001461 )3.5222

PROWT5: PRIZM5 + AGE 0.083 2.1401 )0.001024 )2.6222

PROWT6: PRIZM15 + AGE 0.122 3.5392 )0.001466 )4.1952

PROWT7: PRIZM62 + AGE 0.083 2.4262 )0.001097 )3.1812

PROWG4: AGE 0.181 6.9502 )0.001957 )7.7362

PROWG5: PRIZM5 + AGE 0.180 6.8642 )0.001921 )7.5572

PROWG6: PRIZM15 + AGE 0.174 7.2392 )0.001877 )8.0292

PROWG7: PRIZM62 + AGE 0.141 5.9422 )0.001546 )6.6962

PLT4: AGE 0.129 3.5422 )0.001612 )4.3652

PLT5: PRIZM5 + AGE 0.108 2.9812 )0.001339 )3.6782

PLT6: PRIZM15 + AGE 0.142 4.1582 )0.001727 )5.0182

PLT7: PRIZM62 + AGE 0.091 2.8302 )0.001241 )3.8192

PLG4: AGE 0.192 7.9932 )0.002135 )9.0502

PLG5: PRIZM5 + AGE 0.190 7.7912 )0.002091 )8.7582

PLG6: PRIZM15 + AGE 0.172 7.6132 )0.001927 )8.6682

PLG7: PRIZM62 + AGE 0.135 6.1372 )0.001547 )7.1532

1Significant at 95% confidence level.
2Significant at 99% confidence level.
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their house. This result is consistent with our

hypotheses for private lands, given that the

appearance of a household’s property is affected by

both the land around the home and the PROWs in

front of the house.

Results for both private lands and PROWs are

consistent with previous research that found

socioeconomic status to be an important predictor

of vegetation in urban residential areas (Whitney

and Adams 1980; Palmer 1984; Grove 1996; Hope

and others 2003; Martin and others 2004). The

reason for this is that although lifestyle behavior

was a better predictor of vegetation cover than so-

cial stratification, socioeconomic status is major

data component of both of these PRIZM categori-

zations. Thus, it is reasonable to find that analyses

using socioeconomic status would yield significant

results. Our findings indicate, however, that

including additional household characteristics

associated with lifestyle behavior provide better

results, at least for vegetation cover. This distinction

is amplified by the fact that our preliminary analysis

of space available for planting vegetation—parcel

area minus building area—is predicted best by social

stratification and not by lifestyle behavior (A. R.

Troy and others, unpublished). Thus, social strati-

fication is a better predictor of the possibility for

vegetation, but lifestyle behavior is a better predic-

tor of the vegetation cover that is realized. Given

that most of the previous research has focused on

species composition, diversity, and abundance, this

point needs to be examined further.

The results including median housing age

showed that it was important to add a temporal

Figure 4a. Probability that tree cover is

equal to 100% on private land as a

function of median age of block group,

based on quasi-likelihood logit

regression. 4b Probability that grass

cover is equal to 100% on private land

as a function of median age of block

group, based on quasi-likelihood logit

regression.
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component to the analyses. Median housing age is

an increasingly important predictor of vegetation

cover in private lands and PROWs until it reaches

40–50 years, when age declines as a predictor. The

parabolic form of this result could help to reconcile

the findings from Whitney and Adams (1980),

Hope and others (2003) and Martin and others

(2004) with observations from M. F. Galvin (per-

sonal communication) and Smith (2004). Most of

the field samples of Hope and others (2003) and

Martin and others (2004) were collected in areas

where the median housing age was between 0 and

50 years (Figures 4.A.1 and 5.A.1), whereas Galvin

and Smith studied areas where the median housing

age was more than 40–50 years (Figures 4.B.2 and

5.B.2). The contrasting findings would be consis-

tent with the quadratic form of the equation

describing the significance of median housing age.

Larger data sets stratified by median housing age

and bracketing a potential 40–50 inflexion point

would need to be tested to determine whether this

relationship exists for species composition, diver-

sity, and abundance.

A second temporal component of this research is

related to the issue of association versus cause and

effect. Our research used data that were collected

within a 2–3-year period; thus, we can only claim

associations among these data. The addition of

time-series data would enable us to examine cause-

and-effect relationships, such as whether specific

lifestyle groups locate in areas with particular

combinations and amounts of vegetation cover, or

whether specific lifestyle groups manage for and

cultivate particular combinations and amounts of

vegetation cover. We believe that this issue is

probably more complex. It could be, for instance,

that some lifestyle groups would be more likely to

move, whereas other lifestyle groups would be

more likely to cultivate. In other words, the direc-

tion of the cause-and-effect relationship between

household characteristics and vegetation cover may

not be the same direction, and it may not occur at

the same rate for all lifestyle groups. To examine

this question further, time-series data and house-

hold interviews would be necessary.

Management Implications

The results of our research indicate that lifestyle

behavior is a significant predictor of vegetation

cover on both private lands and PROWs. These

findings suggest that there is potential for novel

management approaches that would implement

environmental marketing strategies. Urban forest-

ers and environmental planners now acknowledge

the need to develop support for and participation

in their programs among diverse constituencies

(Svendsen 2005; Grove and others, accepted

J. M. Grove and others, 2006a, unpublished).

Examples of these constituencies include home-

owners, neighborhood associations, developers,

and business groups. Urban foresters and environ-

mental planners might develop marketing strate-

gies whereby they ‘‘sell’’ greener neighborhoods to

different neighborhood-based consumer markets,

building on their desire for social status and group

identity. Indeed, Robbins and Sharp (2003) have

described recent trends in how the manufacturers

of lawn-care chemicals market their products to

various consumer group by associating ‘‘commu-

nity, family, and environmental health with

intensive turf-grass aesthetics’’ and fostering

household demand for ‘‘authentic experiences of

community, family, and connection to the non-

human biological world through meaningful

work.’’ To promote the goals of urban foresters and

environmental planners, an ecological marketing

strategy could be developed systematically by using

the tools of geodemography and cluster-based

market segmentation. In this way, they could

measure different lifestyle groups’ preferences and

motivations for various environmental behaviors

and then devise communication strategies and

management activities that would address those

preferences and motivations in a spatially explicit

context.
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